Hola, estoy tratando de programar un péndulo usando el lenguaje C++ con la librería de openframeworks. No soy muy entendido en física ni en programación así que pensé en hacer equipo con alguien interesado. La idea es programar un péndulo lo suficientemente realista como para que el movimiento sea resultado de las fuerzas de gravedad y de tensión aplicadas sobre la masa.
Estoy simulando un péndulo en algodoo y algo no entiendo:
Tomé esa captura justo cuando la velocidad era 0, es decir, el punto máximo de amplitud. Pensaba que en ese punto la fuerza de la gravedad debería ser equivalente al componente vertical de la fuerza de la tensión de la cuerda, pero la cuerda tiene una tensión en el eje vertical de 5.29N y la gravedad ejerce una fuerza de 9.8N.
¿Alguien me explica?
#4 Si la componente vertical de la tensión de la cuerda equivale al peso de la gravedad el péndulo estaría en equilibrio y no volvería a caer.
#4 Confundes conceptos.
Velocidad 0 =! fuerza 0.
Tú cuando tiras un objeto hacia arriba, lo haces con una fuerza, pero una vez ha salido de tu mano, ese objeto no tiene ninguna fuerza hacia arriba, sólo tiene a la gravedad "tirando" hacia abajo, y eso pasa desde el instante en que sale de tu mano, hasta que llega al punto más alto (velocidad 0) hasta que toca el suelo y al infinito si no hay otra fuerza que lo mueva en otra dirección.
#4 mg cos del angulo del cable con la bola si debe ser igual a la fuerza de tension del cable, para que no se separen
gracias. ya vi mi error.
Ahora tengo este problema: la segunda ley de Newton dice esto:
ma=T-mg·cos(angulo)
es decir,
masa * aceleración de la partícula = tensión - masa * gravedad * cos(ángulo)
El problema es que los únicos datos que tengo del péndulo cuando lo creo son la posición de la partícula, la posición del pivote, la longitud del brazo, el ángulo, el peso, la velocidad = 0 y la gravedad. Y lo primero que necesito para comenzar la simulación es conocer la tensión de la cuerda, porque esa tensión en la cuerda, junto con la gravedad, tiene como reacción la aceleración de la partícula en los ejes 'x' e 'y'. Pero en la ecuación de Newton me piden que tenga ya identificada la aceleración. ¿Cómo descubro la tensión de la cuerda sin tener la aceleración de la partícula?
La guía que estoy siguiendo (http://www.sc.ehu.es/sbweb/fisica/dinamica/trabajo/pendulo/pendulo.htm) dice lo siguiente:
Ecuación del movimiento en la dirección radial:
La aceleración de la partícula es
a = v2 / l
dirigida radialmente hacia el centro de su trayectoria circular.
Pero no tiene sentido porque en el momento inicial la velocidad = 0 entonces según eso la aceleración sería 0, pero en ese momento es cuando la aceleración es la máxima suponiendo que la partícula la cree con un ángulo distinto a 0.
#9 Si ese es el caso significa que en el siguiente fotograma la posición de la partícula va a ser afectada solo en el eje 'y' ya que la gravedad solo afecta en ese sentido.
Algo que no estoy entendiendo es la diferencia entre tension y aceleración de la partícula. ¿No son lo mismo?
#11 efectivamente, solo afectará en la cordebada 'y', pero es que la gravedad siempre solo afecta en esta coordenada.
Precisamente un instante de tiempo despues de 0, debido a la existencia de la cuerda, la bola no se desplaza solo en el eje Y, sino también en el X.
La tensión de la cuerda es la que permite ese cambio en X, que está relacionado con la velocidad (relacionada con la aceleración normal).
Cuando la bola llegue a su punto más algido la tensión de la cuerda será 0, y cuando esté en su punto más bajo será Fgravedad + Fcentripeta
La velocidad/aceleración de la partícula está relacionada con la tensión claro, pero son cosas distintas, la tensión incluye además la fuerza de gravedad.
#11 tension es una fuerza, en este caso del cable que sujeta a la particula y la mantiene unida, T. Una fuerza es una aceleracion siempre, tienes dos fuerzas, T y la gravedad G que no se equilibran por eso hay movimiento y variaciones de velocidad.
Aceleracion es de la particula, van ligadas por la union cable particula, en diagrama que pones es la aceleracion centripeta que es lo mismo por lo que orbitan los planetas, cuando hace 90 grados con la velocidad cambian la direccion del vector de velocidad por eso se gira, pero no el modulo, que es el valor numerico de la velocidad en si (eso es la proyeccion normal de la gravedad en este caso, la otra en la direccion del cable si que lo cambia).
En la vida real esto se frenaria por el rozamiento con el aire.
Sabes algo de vectores?
efectivamente, solo afectará en la cordebada 'y', pero es que la gravedad siempre solo afecta en esta coordenada.
Pero en ese caso, en el siguiente fotograma de la simulación la partícula se habría salido de el camino que le delinea la circunferencia alrededor del pivote:
Por eso digo que en el momento que la velocidad = 0, debería haber una fuerza en la tensión del brazo para que al siguiente fotograma la partícula permanezca en el camino.
Es decir, la fuerza de la tensión del brazo debería ser afectada directamente por la fuerza de la gravedad, no solamente por la velocidad de la partícula.
Lo que quiero lograr es lo siguiente:
A partir de las posiciones iniciales del péndulo, y conociendo la fuerza de la gravedad y la velocidad inicial v = 0, descubrir cuál es la tensión del brazo de tal manera que lo pueda descomponer en sus dos coordenadas y a partir de las fuerzas g, Tx, Ty, poder trazar el movimiento del péndulo fotograma por fotograma:
Con estas tres fuerzas voy a poder decir:
velocidad_x = velocidad_x + Tx
velocidad_y = velocidad_y + Ty - g
x = x + velocidad_x
y = y + velocidad_y
Entonces obtendré la posición en x y en y para el siguiente fotograma:
Y así sucesivamente
Pero no se cual es la ecuación correcta para determinar la fuerza de la tensión T.
T = ?
Tx = T * cos(angulo)
Ty = T * sin(angulo)
#15 la tensión surge, como digo, sólo por reacción. Es una reacción a la fuerza de la gravedad. Sin gravedad no habría y con gravedad por tanto debe ser igual a ella.
Así que T=mg
Ahora, si la bola sube hasta un ángulo O desde la vertical (ángulo de apertura)
Tx = -TsenO = - mgsenO
Ty = TcosO = mgcosO
Si O = 0 grados (totalmente vertical, Ty = mg
Si O > 0 grados (Tx será una fuerza que hará que la bola se desplace en el eje X, por eso se mueve en ese eje)
Así puedes jugar con dos fuerzas independientes, Una te desplaza en el eje Y, y la otra en el eje X.
Así al menos lo veo yo